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Abstract

It has been debated whether protective measurement implies the re-
ality of the wave function. In this paper, I present a new analysis
of the relationship between protective measurement and the reality of
the wave function. First, I briefly introduce protective measurements
and the ontological models framework for them. Second, I give a sim-
ple proof of Hardy’s theorem in terms of protective measurements.
It shows that when assuming the ontic state of the protected system
keeps unchanged during a protective measurement, the wave function
must be real. Third, I analyze two suggested ψ-epistemic models of
a protective measurement, in which the ontic state of the system is
affected by the measurement. It is shown that although these models
can explain the appearance of expectation values of observables in a
single measurement, their predictions about the variance of the result
of a non-ideal protective measurement are different from those of quan-
tum mechanics. Finally, I argue that no ψ-epistemic models exist for
an ideal protective measurement in the ontological models framework,
and in order to account for the definite result of an ideal protective
measurement, the wave function must be a property of the protected
system, defined either at a precise instant or during an infinitesimal
time interval around an instant. Moreover, this result can also be ex-
tended to the wave function of an unprotected system. This new proof
of the reality of the wave function does not rely on auxiliary assump-
tions, and it may help settle the issue about the nature of the wave
function.

1 Introduction

The reality of the wave function has been a hot topic of debate since the
early days of quantum mechanics. Recent years have witnessed a growing
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interest in this long-standing question (see, e.g. Pusey, Barrett and Rudolph
2012, Leifer 2014, Gao 2017). Is the wave function ontic, directly represent-
ing a state of reality, or epistemic, merely representing a state of incomplete
knowledge? Although there are already several important ψ-ontology theo-
rems, a definite answer to this question is still unavailable.

On the one hand, auxiliary assumptions are required to prove the existing
ψ-ontology theorems, e.g. the preparation independence assumption for the
Pusey-Barrett-Rudolph theorem (Pusey, Barrett and Rudolph, 2012), the
ontic indifference assumption for Hardy’s theorem (Hardy, 2013), and the
parameter independence assumption for the Colbeck-Renner theorem (Col-
beck and Renner 2012, 2017). It thus seems impossible to completely rule
out the ψ-epistemic view without auxiliary assumptions. Indeed, by remov-
ing these auxiliary assumptions, explicit ψ-epistemic (ontological) models
can be constructed to reproduce the statistics of quantum mechanics for
projective measurements in orthonormal bases in Hilbert spaces of any di-
mension (Lewis et al, 2012; Aaronson et al, 2013). However, these models
do not reproduce the quantum predictions for all possible measurements
such as POVMs. As Leifer (2014) rightly pointed out, “it is still possible
that there are no ψ-epistemic models that reproduce the quantum predic-
tions for all POVMs, and it may be possible to prove this without auxiliary
assumptions.”

On the other hand, it has been known that there are other types of
quantum measurements besides the conventional projective measurements,
such as weak measurements and protective measurements (Aharonov and
Vaidman, 1993; Aharonov, Anandan and Vaidman, 1993; Piacentini et al,
2017). Moreover, it has been conjectured that protective measurements,
which can measure the expectation values of observables and even the wave
function on a single quantum system, may imply the reality of the wave
function (Aharonov and Vaidman, 1993; Aharonov, Anandan and Vaidman,
1993, 1996; Gao, 2014, 2015, 2017; Hetzroni and Rohrlich, 2014). However,
it has also been argued that this may be not the case (Unruh, 1994; Rovelli,
1994; Dass and Qureshi, 1999; Schlosshauer and Claringbold, 2014; Combes
et al, 2018). Thus it is still debatable whether protective measurement really
implies the reality of the wave function.

In this paper, I will present a new analysis of the relationship between
protective measurement and the reality of the wave function. In particular, I
will give a new proof of the reality of the wave function in terms of protective
measurements in the ontological models framework. The proof does not rely
on auxiliary assumptions such as the preparation independence assumption
for the Pusey-Barrett-Rudolph theorem.

The rest of this paper is organized as follows. In Section 2, I first give
a brief introduction to protective measurement (PM). It is emphasized that
PM is a natural result of the Schrödinger equation; when the wave function
of the measured system is protected to be unchanged during a standard
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von Neumann measurement of an observable, the result is naturally the
expectation value of the observable in the wave function of the measured
system. Besides, I also briefly introduce two known schemes of PM: the
adiabatic-type PM or A-PM and the Zeno-type PM or Z-PM. In Section
3, I then introduce the ontological models framework, which provides a
general and rigorous approach to determine whether the wave function is
ontic or epistemic. In particular, I introduce the important assumption of
the framework for PMs, namely the rule of connecting the underlying ontic
states with the results of PMs, which says that the definite result of a PM is
determined by the total evolution of the ontic state of the protected system
during the PM.

In Section 4, I take Hardy’s theorem as an example to show that PM
may have implications for the reality of the wave function in the ontological
models framework. The key assumption of Hardy’s theorem is the ontic
indifference assumption, which says that any quantum transformation on a
system which leaves unchanged its wave function (including those of PMs)
can be performed in such a way that it does not affect the underlying ontic
state of the system. I argue that PM provides a simple proof of Hardy’s
theorem under the ontic indifference assumption. In Section 5, I turn to
the dynamics of the ontic state during a PM by analyzing two suggested
ψ-epistemic models of a PM (one for a Z-PM and the other for an A-PM),
in which the ontic state of the system is affected by the PM. It is shown that
although these models can explain the appearance of expectation values of
observables in a single measurement, their predictions about the variance of
the result of a non-ideal PM are different from those of quantum mechanics.1

In Section 6, I further analyze ideal PMs. I argue that no ψ-epistemic
models exist for an ideal protective measurement in the ontological models
framework, and in order to account for the definite result of an ideal protec-
tive measurement, the wave function must be a property of the protected
system, defined either at a precise instant or during an infinitesimal time
interval around an instant. In Section 7, I extend this result to the wave
function of an unprotected system. This proves the reality of the wave func-
tion without resorting to auxiliary assumptions. Conclusions are given in
the last section.

2 Protective measurements

Protective measurement (PM) is a method to measure the expectation value
of an observable on a single quantum system (Aharonov and Vaidman 1993;
Aharonov, Anandan and Vaidman 1993; Vaidman 2009). For a conven-
tional projective measurement, the wave function of the measured system

1In this paper, when I say a PM I usually mean an ideal PM which yields a definite
result unless stated otherwise. Sometimes I also say ideal PM, and this is emphasis.
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is in general changed greatly during the measurement, and one obtains an
eigenvalue of the measured observable randomly, and the expectation value
of the observable can be obtained only as the statistical average of eigenval-
ues for an ensemble of identically prepared systems. By contrast, during a
PM the wave function of the measured system is protected by an appropri-
ate procedure so that it keeps unchanged during the measurement. Then,
by the Schrödinger evolution, the measurement result will be directly the
expectation value of the measured observable, even if the system is initially
not in an eigenstate of the observable.

This result can be seen clearly by the following simple derivation. As
for a projective measurement, the interaction Hamiltonian for measuring
an observable A is given by the usual form HI = g(t)PA, where g(t) is
the time-dependent coupling strength of the interaction, which is a smooth
function normalized to

∫ T
0 g(t)dt = 1 during the measurement interval T ,

and g(0) = g(T ) = 0, and P is the conjugate momentum of the pointer
variable X. When the wave function of the measured system is protected to
keep unchanged during the measurement, the evolution of the wave function
of the combined system is

|ψ(0)〉 |φ(0)〉 → |ψ(t)〉 |φ(t)〉 , t > 0, (1)

where |φ(0)〉 and |φ(t)〉 are the wave functions of the measuring device at
instants 0 and t, respectively, |ψ(0)〉 and |ψ(t)〉 are the wave functions of the
measured system at instants 0 and t, respectively, and |ψ(t)〉 is the same as
|ψ(0)〉 up to an overall phase during the measurement interval [0, T ]. Then
we have

d

dt
〈ψ(t)φ(t)|X |ψ(t)φ(t)〉 =

1

i~
〈ψ(t)φ(t)|[X,HI ] |ψ(t)φ(t)〉

= g(t)〈ψ(0)|A |ψ(0)〉 , (2)

Note that the momentum expectation value of the pointer is zero at the
initial instant and the free evolution of the pointer conserves it. This further
leads to

〈φ(T )|X |φ(T )〉 − 〈φ(0)|X |φ(0)〉 = 〈ψ(0)|A |ψ(0)〉 , (3)

which means that the shift of the center of the pointer wave packet is the
expectation value of A in the initial wave function of the measured system.
This clearly demonstrates that the result of a measurement of an observable
on a system, which does not change the wave function of the system, is the
expectation value of the measured observable in the wave function of the
measured system.

Since the wave function can be reconstructed from the expectation values
of a sufficient number of observables, the wave function of a single quantum
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system can be measured by a series of PMs. Let the explicit form of the
measured wave function at a given instant t be ψ(x), and the measured
observable A be (normalized) projection operators on small spatial regions
Vn having volume vn:

A =

{
1
vn
, if x ∈ Vn,

0, if x 6∈ Vn.
(4)

A PM of A then yields

〈A〉 =
1

vn

∫
Vn

|ψ(x)|2dv, (5)

which is the average of the density ρ(x) = |ψ(x)|2 over the small region Vn.
Similarly, we can measure another observable B = ~

2mi(A∇ + ∇A). The
measurement yields

〈B〉 =
1

vn

∫
Vn

~
2mi

(ψ∗∇ψ − ψ∇ψ∗)dv =
1

vn

∫
Vn

j(x)dv. (6)

This is the average value of the flux density j(x) in the region Vn. Then when
vn → 0 and after performing measurements in sufficiently many regions Vn
we can measure ρ(x) and j(x) everywhere in space. Since the wave function
ψ(x) can be uniquely expressed by ρ(x) and j(x) (except for an overall phase
factor), the whole wave function of the measured system at a given instant
can be measured by PMs.

There are two known schemes of PM (Aharonov and Vaidman 1993;
Aharonov, Anandan and Vaidman 1993). The first scheme is to introduce a
protective potential such that the wave function of the measured system at
a given instant, |ψ〉, is a nondegenerate energy eigenstate of the total Hamil-
tonian of the system with finite gap to neighboring energy eigenstates. By
this scheme, the measurement of an observable is required to be weak and
adiabatic. We may call this scheme the adiabatic-type PM or A-PM. An
ideal A-PM requires T∆E → ∞, where T is the measurement time, and
∆E is the smallest of the energy differences between |ψ〉 and other energy
eigenstates. The second scheme is via the quantum Zeno effect, and it may
be called the Zeno-type PM or Z-PM. The Zeno effect is realized by mak-
ing frequent projective measurements of an observable, of which the wave
function of the measured system at a given instant, |ψ〉, is a nondegenerate
eigenstate. By this scheme, the measurement of the measured observable
is not necessarily weak but weaker than the Zeno projective measurements.
An ideal Z-PM requires N →∞, where N is the times of the Zeno projective
measurements.

Since the wave function can be measured from a single system by a
series of PMs, it seems natural to conjecture that the wave function refers
directly to the physical state of the system. In order to investigate whether
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this conjecture is true, heuristic arguments are not enough, and we need a
rigorous approach.

3 Ontological models framework

A general and rigorous approach to determine whether the wave function
is ontic or epistemic is the ontological models framework (Spekkens 2005;
Harrigan and Spekkens 2010; Leifer 2014). It has three fundamental as-
sumptions.

The first assumption is about the existence of the underlying state of
reality. It says that if a physical system is prepared such that quantum
mechanics assigns a pure state or wave function to it, then after preparation
the system has a well-defined set of physical properties or an underlying
ontic state, which is usually represented by a mathematical object, λ. Here a
strict ψ-ontic/epistemic distinction can be made. In a ψ-ontic (ontological)
model, the ontic state of a physical system uniquely determines its wave
function, and thus the wave function is a property of the system. While in a
ψ-epistemic (ontological) model, there are at least two wave functions which
are compatible with the same ontic state of a physical system. In this case,
the wave function represents a state of incomplete knowledge – an epistemic
state – about the actual ontic state of the system. In general, the wave
function corresponds to a probability distribution p(λ|P ) over all possible
ontic states when the preparation is P , and the probability distributions
corresponding to two different wave functions may overlap.

The second assumption of the ontological models framework is about the
dynamics of the ontic state. It says that a unitary transformation U on a
wave function is represented in general by a stochastic transformation on
the ontic state space. For example, for a finite ontic state space and the
stochastic transformation being a Markov kernel γ, γλ(λ′) is the probability
that the dynamics causes λ to make a transition to λ′, both of which are on
the ontic state space (Leifer 2014).

In order to investigate whether an ontological model is consistent with
the empirical predictions of quantum mechanics, we also need a rule of con-
necting the underlying ontic states with the results of measurements. This is
the third assumption of the ontological models framework, which says that
when a measurement is performed, the behaviour of the measuring device
is determined only by the ontic state of the system, along with the physical
properties of the measuring device. For a projective measurement M , this
assumption means that the ontic state λ of a physical system determines the
probability p(k|λ,M) of different results k for the measurement M on the
system. The consistency with the predictions of quantum mechanics then
requires the following relation:

∫
dλp(k|λ,M)p(λ|P ) = p(k|M,P ), where

p(k|M,P ) is the Born probability of k given M and P .
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For a PM, which yields a definite measurement result, it seems that
the above assumption should mean that the ontic state of a physical system
determines the definite result of the PM on the system (Gao 2015). However,
this view is debatable. Unlike a projective measurement, a PM such as
an A-PM may take a very long time, and thus it seems not reasonable
to assume that when a PM is performed, the behaviour of the measuring
device is determined by the ontic state of the measured system (along with
the physical properties of the measuring device) immediately before the PM,
whether the ontic state of the measured system is affected or not during the
PM. A more reasonable assumption for PMs is that the ontic state of the
measured system may be affected (by both the protection procedure and the
measuring device) and thus evolve in a certain way during a PM, and the
definite result of the PM is determined by the total evolution of the ontic
state of the system during the PM, not simply by the initial ontic state of
the system (see also Gao 2017).

In the following sections, I will analyze whether PM has implications for
the reality of the wave function in the above ontological models framework.
I will first give a very simple proof of Hardy’s theorem in terms of PMs,
which suggests that the answer may be yes.

4 A simple proof of Hardy’s theorem

Hardy’s theorem is one of the three important ψ-ontology theorems appeared
in recent years (Hardy 2013). It is based on three assumptions. The first
one is realism, which says that each time a system is prepared there exists
an underlying state of reality or an ontic state, denoted by λ. This is just
the first assumption of the ontological models framework. The second as-
sumption of Hardy’s theorem is possibilistic completeness, which says that
the ontic state, λ, is sufficient to determine whether any outcome of any
(projective) measurement has probability equal to zero of occurring or not.
This is a weaker version of the second assumption of the ontological models
framework, according to which the ontic state determines the probabilities
for the results of projective measurements. The third assumption of Hardy’s
theorem is an auxiliary assumption and also the key assumption of the theo-
rem, called ontic indifference, which says that any quantum transformation
on a system which leaves unchanged any given wave function |ψ〉 can be
performed in such a way that it does not affect every underlying ontic state
which is assigned a nonzero probability by |ψ〉.

Hardy’s theorem can be illustrated with a simple example (Leifer 2014).
Assume there are two nonorthogonal states |ψ1〉 and 1√

2
(|ψ1〉+ |ψ2〉), which

are compatible with the same ontic state λ as required by the ψ-epistemic
view. Consider a unitary evolution which leaves |ψ1〉 invariant but changes

1√
2
(|ψ1〉+ |ψ2〉) to its orthogonal state 1√

2
(|ψ1〉−|ψ2〉). Since two orthogonal
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states correspond to different ontic states,2 the original ontic state λ must
be changed by the unitary evolution. Then if the unitary evolution that
leaves |ψ1〉 invariant also leaves the underlying ontic state λ invariant as
the ontic indifference assumption requires,3 there will be a contradiction. In
other words, under the above three assumptions we can prove that the two
nonorthogonal state |ψ1〉 and 1√

2
(|ψ1〉+ |ψ2〉) are ontologically distinct.

This is the simplest example of Hardy’s theorem. A complete proof of
this theorem requires a more complex mathematical analysis. In particu-
lar, the proof requires that the Hilbert space associated with the system in
question is infinite dimensional. If this dimension, N + 1, is finite, then it
can be proved only that any pair of wave functions, |ψ〉 and |φ〉, for which
|〈φ|ψ〉|2 ≥ N−1

N must have non-overlapping distributions over the ontic states
(under the above three assumptions). Interestingly and surprisingly, how-
ever, even if the ontic indifference assumption holds only for a single wave
function, Hardy’s theorem can also be proved (Hardy, 2013; Patra, Pironio
and Massar, 2013).

In the following, I will show that under the key assumption of Hardy’s
theorem, namely the ontic indifference assumption, protective measurement
implies the reality of the wave function in the ontological models framework.
This will provide a simple proof of Hardy’s theorem.

For a PM, the wave function of the protected system keeps unchanged
during the measurement. Then, according to the ontic indifference assump-
tion, the ontic state of the system is not changed either during the mea-
surement. In the ontological models framework for PMs, it is assumed that
the total evolution of the ontic state of the protected system during a PM
determines the definite result of the PM (this is the third assumption of
the framework). Then, since the ontic state of the system does not change
during the PM, the initial ontic state of the system already determines the
definite result of the PM, namely the expectation value of the measured
observable. This means that the expectation value of each measured ob-
servable is a property of the protected system. Since a wave function can
be constructed from the expectation values of a sufficient number of observ-
ables, the wave function of the protected system is also a property of the
system.

In order to extend this result to the wave function of an unprotected
system, we may reuse the ontic indifference assumption. Since a protection
procedure such as that in an A-PM is a unitary transformation which does
not change the wave function of the measured system, the ontic indifference
assumption requires that each ontic state of the system (which is assigned

2Note that the possibilistic completeness assumption is needed to prove this result.
3One strong motivation for this assumption is locality. When |ψ1〉 and |ψ2〉 are two

spatially separated states prepared in regions 1 and 2 respectively, it seems reasonable to
assume that the local evolution of the ontic state in region 2 does not influence the ontic
state in region 1.
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a nonzero probability by the wave function) is not changed after the trans-
formation. Then, if the wave function is a part of the ontic state of the
protected system, it is also a part of the ontic state of the original, unpro-
tected system. In other words, the wave function of an unprotected system
is also real.

Hardy’s theorem can also be proved under the restricted ontic indif-
ference assumption, namely the theorem can be proved even if the ontic
indifference assumption holds only for a single wave function (Hardy, 2013;
Patra, Pironio and Massar, 2013). It seems that the above proof in terms
of PMs cannot go through if the ontic indifference assumption holds only
for a single wave function; in this case, the proof will only show that this
wave function is real. However, if one considers the fact that the scheme of
PM is the same for all wave functions, then it is arguable that if the ontic
indifference assumption holds for a single wave function, it will also hold for
other wave functions. In this sense, the above proof in terms of PMs may
also go through under the restricted ontic indifference assumption.

5 On two ψ-epistemic models of PMs

The above analysis shows that when assuming the ontic state of the pro-
tected system keeps unchanged during a PM, the wave function must be
real. Then, an ψ-epistemic model must assume that the ontic state of the
protected system evolves in a certain way in order to account for PMs.
Concretely speaking, the ontic state of the protected system must undergo
a dynamical process to generate the result of the PM, which is the expecta-
tion value of the measured observable. The question is: can any dynamics
of the ontic state account for PMs? In this section, I will analyze two re-
cently suggested ψ-epistemic models of PMs, one for Z-PMs and the other
for A-PMs (Combes et al 2018).

For a Z-PM, there is an ensemble of identically copies of the measured
system, which is prepared by the protection procedure, namely the frequent
Zeno projective measurements, when the protection is successful. Thus, it
seems possible that the result of the Z-PM, namely the expectation value
of the measured observable, is also obtained as the ensemble average of
the eigenvalues of the measured observable as for conventional projective
measurements. Indeed, Combes et al (2018) suggested such an ψ-epistemic
model for a Z-PM.4 The model assumes that any observable A of the mea-
sured system has a definite value at any time, which is one of the eigenvalues
of A. Similarly, the pointer of the measuring device also has a definite po-
sition at any time, which is the same as the measured position predicted
by quantum mechanics. When each Zeno projective measurement results
in the wave function of the measured system being in |ψ〉, it also random-

4The model discussed below is an extension of the original model for a spin-1/2 particle.
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izes the value of A and make it be ai with probability pi, where ai is an
eigenvalue of A, and pi = |〈ai|ψ〉|2 is the corresponding Born probability.
Then the measured system shifts the pointer by ai/N after the follow-up
measurement of A. In the end, the total pointer shift, denoted by ∆x, will
be the expectation value of A when N approaches infinity:

∆x = lim
N→∞

∑
i

niai/N =
∑
i

piai = 〈A〉. (7)

This ψ-epistemic model shows that the result of a Z-PM, the expectation
value of the measured observable, may be generated from the eigenvalues of
the observable for an ensemble of identically copies of the measured system,
which is prepared by the protection procedure in the Z-PM. However, as
Combes et al (2018) also pointed out, the model does not aim to provide a
complete account of a Z-PM, which means that the predictions of the model
may be not fully consistent with those of quantum mechanics. This is indeed
the case, since it can be shown that this ψ-epistemic model and quantum
mechanics have different predictions about the variance of the result of a
Z-PM with finite N .

A Z-PM is composed of N identical units, each of which contains a
protecting system and a measuring system. In the above ψ-epistemic model,
the pointer shift generated by the i-th Z-PM unit, ∆xi, has a probability
distribution

p(∆xi = ak) = |〈ak|ψ〉|2. (8)

Thus we have V ar(∆xi) = V ar(A)/N2 for any i, where V ar(·) is the vari-
ance, and V ar(A) ≡ 〈A2〉 − 〈A〉2. Then the variance of the final position of
the pointer after the Z-PM is

V ar(xf ) = V ar(x0 +
∑
i

∆xi), (9)

where xf is the final position of the pointer, and x0 is the initial position of
the pointer. Since each random process ∆xi is independent with each other
and also independent of the initial position of the pointer in the model, we
have

V ar(xf ) = V ar(x0) + V ar(
∑
i

∆xi) = V ar(x0) +
V ar(A)

N
. (10)

On the other hand, according to quantum mechanics, the branch of the
state of the combined system after the Z-PM (i.e. after N such measure-
ments), in which each Zeno projective measurement results in the state of
the measured system being in |ψ〉, is (up to the first order of 1/N)
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|t = T 〉 = |ψ〉 |φ(x0 + 〈A〉)〉

+
V ar(A)

2N
|ψ〉
∣∣φ′′(x0 + 〈A〉)

〉
, (11)

where φ(x0) is the initial pointer wave packet. Suppose the initial pointer
wavepacket is a Gaussian wavepacket. Then we can calculate the variance
of the final measuerd position of the pointer, which is

V ar(xf ) = V ar(x0) +
V ar(A)

N
V ar(x0)(k1 + k2V ar(x0)), (12)

where V ar(x0) is the variance of the initial measured position of the pointer,
and k1, k2 are numerical constants related to the Gaussian wavepacket.

It can be seen that the above ψ-epistemic model and quantum mechanics
give obviously different predictions about the variance of the result of a Z-
PM with finite N . In the model, the first order term does not depend on the
initial position variance of the pointer, but in quantum mechanics it does.
Certainly, one may revise the above ψ-epistemic model so that its predictions
may be consistent with those of quantum mechanics for the first order of
1/N . But it seems extremely difficult or even impossible to revise the model
so that its predictions are consistent with those of quantum mechanics for all
orders of N , except that the dynamics of the ontic state in the ψ-epistemic
model is also the Schrödinger equation for the wave function.5 But then the
wave function will be a part of the ontic state of the system, and the model
will be ψ-ontic, not ψ-epistemic.

Combes et al (2018) also proposed an ψ-epistemic model for an A-PM
for some observables. In the model, the wave function is a coherent state of a
quantum harmonic oscillator. The Hamiltonian of the system is set to make
this state be its nondegenerate ground state. Then the system is coupled
to a pointer via the usual interaction Hamiltonian HI = PA/T for a time
duration T , where P is the conjugate momentum of the pointer variable X,
and A is a measured quadrature observable.6 In the Heisenberg picture, the
pointer variable at time t during the A-PM is (up to the first order of 1/T)

X(t) = X(0) +
t

T
〈A〉+

1

T
[q(0) sin t+ p(0)(1− cos t)], (13)

where q(0) is the initial position of the system, and p(0) is the initial mo-
mentum of the system.

In this ψ-epistemic model for an A-PM, as in the previous ψ-epistemic
model for a Z-PM, it is still assumed that any observable A of a system
has a definite value at any time, which is one of the eigenvalues of A, and

5I will discuss this point in more detail later.
6Here I use a notation somewhat different from the orginal one.
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in particular, the pointer also has a definite position at any time, which is
the same as the measured position predicted by quantum mechanics. Then,
when T → ∞, we have X(T ) = X(0) + 〈A〉, which means that the pointer
shift is indeed the result of the A-PM, namely the expectation value of the
measured observable.

However, it can be seen that like the previous ψ-epistemic model for a
Z-PM, this ψ-epistemic model for an A-PM is also inconsistent with quan-
tum mechanics in the predictions about the variance of the measurement
result for non-ideal situations in which the measurement time T in finite.
According to the model, the variance of the final position of the pointer after
the A-PM is

V ar(xf ) = V ar(x0) +
1

T 2
[V ar(q0) sin2 T + V ar(p0)(1− cosT )2], (14)

where V ar(q0) is the initial position variance of the system, and V ar(p0) is
the initial momentum variance of the system. This time the discrepancy is
more obvious. Quantum mechanics predicts that the variance of the final
measured position of the pointer after the A-PM should have the first order
term which depends on the initial measured position of the pointer, while
the above model predicts that there is no such a term at all.7

Again, one may think that the above ψ-epistemic model for an A-PM
can be revised so that its predictions are consistent with those of quantum

7In Combes et al (2018), the authors claimed that for an A-PM, all of the information
about the expectation value of the measured observable obtained by the measurement
comes from the protection operation (i.e. the protection Hamiltonian) rather than from
the system itself. But this claim is not proved. In the above model, the authors said that
the expectation value of the measured observable is a parameter in the Hamiltonian (see
Eq. (25) of the paper). But this is arguably a mathematical trick. It just rewrites the
usual interaction Hamiltonian HI = g(t)PA as HI = g(t)P (A′+〈A〉), where A′ = A−〈A〉.
Note that even if what the authors said is true, the expectation value is not a parameter in
the protection Hamiltonian, but a parameter in the interaction Hamiltonian. Moreover, it
is obvious that the expectation value of the measured observable depends on the measured
observable and the wave function of the measured system in mathematics. In the model,
the expectation value of the measured observable is cθ = cq cos θ+cp sin θ, where cq and cp
come from the wave function of the system (see Eq. (23) of the paper), and cos θ and sin θ
come from the measured observable. In fact, the above claim cannot be true. The reason
is that the same protection operation for an A-PM can protect infinitely many energy
eiegnstates, while the expectation values of the measured observable in these states are
different in general, and thus the system needs to pick out one of these states as the one that
it is in at least. The authors admitted this point for a Z-PM. In the final analysis, we need
an analysis of the physical mechanism of a PM, such as the suggested ψ-epistemic models,
in order to answer the question of where the information obtained by the measurement
comes from. In mathematics, the information about the wave function of the measured
system may be indeed present in the POVM for a Z-PM or in the Hamiltonian for an
A-PM. But this does not imply that the information obtained by a PM must come from
the protection operation rather than from the system itself, since it is also present in the
wave function of the system more obviously, and it may directly come from the system
itself if the wave function is a property of the system.
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mechanics for the first order of 1/T . However, it seems impossible to obtain
the consistency, let alone the consistency for all orders of 1/T . Just look
at the final wave function of the combining system after an A-PM, which is
(up to the first order of 1/T )

|t = T 〉 = |ψ〉 |φ(x0 + 〈A〉)〉+
1

T

∑
m

1

E − Em
|Em〉

× [〈Em|A |ψ〉
∣∣∣φ̃(x0 + 〈A〉)

〉
− e

i
~ (E−Em)T 〈ψ|A |Em〉

∣∣∣φ̃(x0 + 〈A〉m)
〉

], (15)

where E is the energy of the measured state |ψ〉, |Em〉 are the other en-

ergy eigenstates, Em are the corresponding energy eigenvalues,
∣∣∣φ̃(x0)

〉
is

a distorted version of the initial pointer wave packet (see Schlosshauer and
Claringbold 2014), and 〈A〉m ≡ 〈Em|A |Em〉. Since energy, unlike the wave
function, is still a property of a single system in an ψ-epistemic model,
the dynamics of the ontic state of the system in the model must gener-
ate the infinitely many energy eigenvalues, {Em}, during each measurement
in order to make the same predictions with quantum mechanics about the
variance of the result for the first order of 1/T . While in order to generate
exactly the same infinitely many energy eigenvalues which are derived from
the Schrödinger equation (e.g. the energy levels for an infinite square well
potential), it seems that the dynamics of the ontic state must be also the
Schrödinger equation. But then the wave function will be a part of the ontic
state of the system, and the model will be ψ-ontic, not ψ-epistemic.

Although the above ψ-epistemic models for Z-PMs and A-PMs are not
fully consistent with quantum mechanics for finite N and T , it seems that
the consistency may be reached for ideal situations, namely when N → ∞
and T →∞; in this case, they give the same predictions about the variance
of the result. In the next section, however, I will argue that no ψ-epistemic
models exist for ideal PMs.

6 The wave function of a protected system is real

In the following, I will argue that PM may imply the reality of the wave
function of a protected system in the ontological models framework.

Consider an ideal PM of an observable A. The initial wave function
of the measured system is |ψ〉. As before, the interaction Hamiltonian is
given by the usual form HI = g(t)PA, where g(t) is the time-dependent
coupling strength of the interaction, which is a smooth function normalized
to
∫ T

0 g(t)dt = 1 during the measurement interval T , and g(0) = g(T ) = 0,
and P is the conjugate momentum of the pointer variable X. Then the
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pointer shift after a time δt during the PM is:

∆x = 〈A〉
∫ δt

0
g(t)dt, (16)

where ∆x = 〈X〉δt−〈X〉0, 〈X〉0 is the center of the initial pointer wavepacket,
〈X〉δt is the center of the pointer wavepacket after δt, and 〈A〉 is the expec-
tation value of the measured observable A. Here I used the fact that the
wave function of the measured system is not changed during the PM.

When δt = T we obtain ∆x = 〈A〉, namely the result of the PM is
the expectation value of the measured observable. According to the third
assumption of the ontological models framework for PMs, the result of the
PM, 〈A〉, is determined by the total evolution of the ontic state of the system
during the measurement interval T . This means that 〈A〉 is an average
property of the protected system during the measurement interval T . This
is already an interesting result (see also Aharonov, Anandan and Vaidman,
1996).

Furthermore, when the time-dependent coupling strength g(t) is known,
we can also obtain the result 〈A〉 after any δt > 0 during the PM (see below
for a more detailed discussion). Then, 〈A〉 is also an average property of
the protected system during the time interval δt. Since δt can be arbitrarily
small, this means that 〈A〉 is actually a property of the protected system
defined during an infinitesimal time interval around the initial instant t = 0.
Moreover, since a wave function can be constructed from the expectation
values of a sufficient number of observables, the initial wave function of the
protected system, |ψ〉, is also a property of the system defined during an
infinitesimal time interval around the initial instant.

Here it is worth noting that the ontic state of a physical system can be
defined either at a precise instant or during an infinitesimal time interval
around an instant. The former is like the definition of position in classi-
cal mechanics, and the latter is like the definition of velocity in classical
mechanics. Thus, according to the above analysis, the wave function of a
protected system is a part of the ontic state of the system. If the evolution
of the ontic state is continuous, then the wave function will be an instan-
taneous property of the system. While if the evolution of the ontic state
is discontinuous, then the wave function will be a property of the system
defined during an infinitesimal time interval around a given instant. In this
case, the wave function cannot be the complete ontic state of the system;
rather, the ontic state of the system will include both the wave function and
the instantaneous properties of the system which evolve in a discontinuous
way.

There is also one point which needs to be clarified. It is about the
understanding of the arbitrary smallness of δt in Eq. (16). In order to
ensure that the result of a PM after δt can be read out, it is required that
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〈A〉
∫ δt

0 g(t)dt > Wδt, where Wδt =
√

1
2(W 2

0 + δt2

M2W 2
0

) is the width of the

pointer wave packet after δt, W0 is the initial width of the pointer wave
packet, and M is the mass of the pointer.8 The spread of the pointer wave
packet is smaller than its initial width when the mass of the pointer is large
enough, namely M > δt/W 2

0 . While there is a restriction on the initial
width of the pointer wave packet in order that the scheme of a PM is valid.

Roughly speaking, for a Z-PM, the restriction is W0 > 〈A〉
∫ T/N

0 g(t)dt, and

for an A-PM, the restriction is W0 > 〈A〉
∫ ~/∆E

0 g(t)dt, where ∆E is the
smallest of the energy differences between |ψ〉 and other energy eigenstates.
Then, the above requirement is equivalent to δt > T/N for a Z-PM or
δt > ~/∆E for an A-PM. This means that when N → ∞ for a Z-PM or
∆E →∞ for an A-PM, the requirement can be satisfied for any δt > 0, or
in other words, the result of a PM can be read out after any δt > 0.

Here one may object that for a Z-PM, no matter how small δt is, if only
the result, namely the expectation value of the measured observable, can
be read out, there may alway exist an ψ-epistemic model that can account
for the result, since the condition for reading out the result is δt > T/N ,
depending on the frequent Zeno projective measurements, and in this case
there may exist a dynamical process that can generate the result, like the
one discussed in the last section. Agreed; this may be indeed true for any
finite N , although a complete ψ-epistemic model is still unavailable for a
Z-PM with finite N . But the key point is that for an ideal Z-PM, namely
when N →∞, the dynamical process that generates the expectation value of
the measured observable, if it does exist, will happen during an infinitesimal
time interval and thus it will be a part of the ontic state of the system, which
is defined during an infinitesimal time interval around a given instant. In
other words, when N → ∞, the ψ-epistemic model becomes an ψ-ontic
model. Note that the above argument does not claim that an ψ-epistemic
model cannot account for the result of a non-ideal Z-PM; rather, it only
concludes that an ψ-epistemic model cannot account for an ideal Z-PM.
This is enough to prove the reality of the wave function of a protected
system.

For an A-PM, the situation seems somewhat different and better. The
condition for reading out the result of an A-PM is δt > ~/∆E, and it is
arguable that the dynamical process that may generate the result is inde-
pendent of ∆E, which is also determined by the enegy of another energy
eigenstate.9 Then, given any dynamical process that takes a finite time (if

8Here it is also worth noting that for a non-ideal PM, there is also a contribution to
Wδt from the measuring interaction. But the contribution is as small as O(1/N2) for a
Z-PM or O(1/T 2) for an A-PM, while the pointer shift is in the order of 1/N for a Z-PM
or 1/T for an A-PM.

9One may argue that the dynamical process of the protected system may also depend
on the energies of other energy eigenstates, since the protection is not perfect and the
wave function of the protected system is also disturbed. However, it is arguable that the
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it took only an infinitesimal time, then the wave function would be already
a property of the protected system), we can always adjust ∆E so that the
result of an A-PM can be read out before it is generated by the dynamical
process. This means that an ψ-epistemic model cannot account for the A-
PM. Since this argument does not rely on the ideal condition ∆E → ∞, it
is stronger than the above argument for a Z-PM.

To sum up, I have argued that in order to account for the definite result of
an ideal PM, the wave function must be a property of the protected system,
defined either at a precise instant or during an infinitesimal time interval
around an instant. The argument does not resort to auxiliary assumptions.
This also means that any ψ-epistemic model, in which there is at least a
wave function which is not a property of a single protected system, cannot
account for PMs. In other words, PM implies the reality of the wave function
of a protected system.

7 The reality of the wave function

In this section, I will try to extend the above result to the wave function of
an unprotected system. I will give three arguments, from the weakest to the
strongest.

The first argument is based on an auxiliary assumption similar to the
assumption of preparation independence for the Pusey-Barrett-Rudolph the-
orem. An obvious assumption is preparation noncontextuality, which says
that if two preparation procedures are represented by the same wave func-
tion, then there should be no difference between them at the ontological
level, or in other words, a wave function corresponds to a unique proba-
bility distribution of the ontic state.10 Based on this assumption, we can
directly extend the above result to the wave function of an unprotected sys-
tem. Since the wave function of an unprotected system does not change
after the system is protected, the ontic states of the two systems have the
same probability distribution according to the preparation noncontextuality
assumption. Then the wave function being a part of the ontic state of the
protected system implies that the wave function is also a part of the ontic

dependence of the dynamical process on the energies of other energy eigenstates should
be weak, being in the order of the disturbance 1/T . Moreover, as noted before, since the
dynamics of the ontic state is not the Schrödinger equation for the wave function, it seems
impossible that the new equation of dynamics also gives exactly the same infinitely many
energy levels which are derived from the Schrödinger equation.

10According to Leifer (2014), “Preparation noncontextuality says that if there is no
difference between two preparation procedures in terms of the observable statistics they
predict, i.e. they are represented by the same quantum state, then there should be no dif-
ference between them at the ontological level either, i.e. they should be represented by the
same probability.” Due to the existence of PMs, the observable statistics in this definition
of preparation noncontextuality should be restricted for projective measurements.
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state of the unprotected system. In other words, the wave function of the
unprotected system is also real.

Note that the ψ-ontic view implies preparation noncontextuality, and
preparation contextuality implies the ψ-epistemic view. Thus it is prepara-
tion noncontextuality, not preparation contextuality, that can be assumed
in proving the ψ-ontic view or the ψ-epistemic view. So far, the necessity
of preparation contextuality has only been established for mixed states. If
preparation contextuality is true for one pure state, then the ψ-epistemic
view will be proved. On the other hand, the reality of the wave function of
a protected system (for A-PM) shows that all energy eigenstates are real,
which implies that the preparation noncontextuality assumption is true at
least for all energy eigenstates.

We may also use a weaker auxiliary assumption in order to prove the
reality of the wave function of an unprotected system. It is not required
that a wave function must correspond to a unique probability distribution
of the ontic state. It is only required that a wave function corresponds to
a unique set of the ontic states which are assigned a zero probability by
it. This means that if an ontic state can be prepared by a preparation
procedure for a wave functon (with a nonzero probability), then it can also
be prepared by other preparation procedures for the wave functon (with a
nonzero probability). Then, since the wave function is a part of the ontic
state of a protected system, which is prepared by a protection procedure,
it can also be prepared by other non-protection preparation procedures,
which means that the wave function is also a part of the ontic state of an
unprotected system. In other words, the wave function of an unprotected
system is also real.11

My second argument is based on a meta assumption concerning the
nature of the laws of physics, which is different from a usual auxiliary as-
sumption about the ontic state of a system and its dynamics. The key is to
notice that the statistics of the projective measurements of all observables
are the same for an unprotected system and the corresponding protected
system (e.g. which is protected by a potential). Then, if the wave function
of the former is epistemic and the wave function of the later is ontic, then
we will have two different mechanisms to explain the statistics, as well as
other quantum phenomena (except those related to PMs). For example,
we will use the Schrödinger equation for the protected system, whose ontic
state is the wave function, and use another different equation of motion for
the unprotected system, whose ontic state is not the wave function. Thus,

11Certainly, one may also prove this result by resorting to other auxiliary assumptions.
For example, one may assume that the wave function of any system is not in the ontic
state space of the system for the ψ-epistemic view. Then one can derive a contradicton
if the wave function of an unprotected system is not real. Note that including the wave
function in the ontic state space seems to be against the spirit of the ψ-epistemic view. I
will discuss this point in more detail later.
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if we assume that there is a unique mechanism or equation of motion to
explain the quantum statistics, which is a meta assumption about the laws
of physics,12 then the reality of the wave function of a protected system will
imply the reality of the wave function of an unprotected system.13

The above two arguments are both based on an auxiliary assumption.
In order to prove the reality of the wave function of an unprotected system
without resorting to auxiliary assumptions, we need a further analysis of
the change of the ontic state after the protection procedure, such as the
protection potential for an A-PM, is added or removed.14 This leads to my
third argument. Assume that a wave function of an unprotected system,
|ψ〉, is not real and corresponds to a probability distribution p(λ|P ) over all
possible ontic states λ when the preparation is P . Then after the protection
procedure is added, it is required that all these ontic states λ should change
to the same ontic state |ψ〉.15 This seems possible since the protection pro-
cedure relates to the wave function. On the other hand, when the protection
procedure is removed, it is required that the ontic state |ψ〉 should change
back to the ontic state λ with a probability p(λ) compatible with the wave
function of the unprotected system (which is not necessarily the same as the
original probability p(λ|P ) when preparation contextuality is allowed). The
question is: can this requirement be satisfied?

The answer is arguably negative. An essential reason is as follows. When
the protection procedure is added, the change of the ontic state from any
possible λ to |ψ〉 is a deterministic process. While when the protection
procedure is removed, the reversal change of the ontic state from |ψ〉 to any
possible λ is a random process; |ψ〉 changes to λ with a probability p(λ).
But no physical mechanism can make the reversal of a deterministic process
be a random process. Note that this problem can be avoided when the wave
function of an unprotected system, like the wave function of a protected
system, is also real. In this case, both processes are deterministic; the ontic
state does not change when the protection procedure is added or removed.

It can be seen that preparation contextuality will not weaken but strengthen
the above argument. If assuming the wave function of an unprotected sys-
tem, unlike the wave function of a protected system, is not real, then we

12Note that this assumption is not the same as preparation noncontextuality, and the
former does not require the latter either. For example, if the ψ-epistemic view is true, in
which preparation contextuality is allowed, it may also provide a unique mechanism to
explain the quantum statistics.

13Here it may be also worth noting that the ψ-epistemic models are proposed with the
aim of explaining the quantum phenomena which seem puzzling when assuming the ψ-
ontic view. But if these phenomena also need an ψ-ontic explanation, then the aim of the
ψ-epistemic models will be misplaced.

14I thank Matt Pusey for his helpful comments on an earlier draft of this paper, in
which he pointed out the necessity of such an analysis.

15Here I suppose the completeness of the ontic state being the wave function for sim-
plicity. This does not influence the argument below.
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already assume preparation contextuality; a wave function does not corre-
spond to a unique probability distribution of the ontic state. But if prepara-
tion contextuality is allowed for unprotected systems, then the above require-
ment cannot be satisfied. In this case, the wave function of an unprotected
system, |ψ〉, does not correspond to a unique probability distribution of the
ontic state. Then, even if the reversal of a deterministic process can be a
random process, and in particular, the ontic state can change from |ψ〉 to
any possible λ randomly, the probability of the change cannot be determined
in general.

In fact, even if the wave function of an unprotected system, |ψ〉, corre-
sponds to a unique probability distribution of the ontic state, p(λ), it seems
that the above requirement cannot be satisfied either. The reason is that the
unitary transformation corresponding to the removal of the protection pro-
cedure, as well as the ontic state of the protected system before the removal,
|ψ〉, cannot determine the probability of the change from |ψ〉 to any possi-
ble λ, which is required to be p(λ). The protection procedure relates only
to |ψ〉, while |ψ〉 does not determine p(λ). This can be seen from the rule
connecting |ψ〉 with p(λ):

∫
p(k|λ,M)p(λ)dλ = |〈ψ|k〉|2, where p(k|λ,M) is

the probability of different results k for the measurement M on the system
whose ontic state is λ. In mathematics, p(k|λ,M) and p(λ) determine |ψ〉,
but |ψ〉 does not determine p(k|λ,M) and p(λ).

To sum up, I have argued that the wave function of an unprotected
system, like the wave function of a protected system, is also real. The
argument may not resort to auxiliary assumptions.

8 Conclusion

Since the discovery of the new method of protective measurement in quan-
tum mechanics by Aharonov, Vaidman and Anandan in 1993, it has been
debated whether it implies the reality of the wave function. On the one
hand, since protective measurement can measure the wave function from a
single system, it seems tempting and natural to assume that the wave func-
tion is a property of a single system. On the other hand, since protective
measurement must involve a protection procedure related to the wave func-
tion of the measured system, it seems also possible that the wave function
is not a property of the system, but generated by the evolution of the actual
ontic state of the system induced by the protection procedure.

In this paper, I present a new analysis of the relationship between pro-
tective measurement and the reality of the wave function, and argue that
the former may indeed imply the latter in the ontological models frame-
work. I first give a simple proof of Hardy’s theorem, which shows that when
assuming the ontic state of the protected system keeps unchanged during
a protective measurement, the wave function must be real. I then show
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that although two suggested ψ-epistemic models of a protective measure-
ment can explain the appearance of expectation values of observables in the
measurement by adding a certain dynamics of the ontic state, their predic-
tions about the variance of the result of a non-ideal protective measurement
are different from those of quantum mechanics. Finally, I argue that no
ψ-epistemic models exist for ideal protective measurements in the ontologi-
cal models framework, and in order to account for the definite result of an
ideal protective measurement, the wave function must be a property of the
protected system. Moreover, this result can also be extended to the wave
functions of unprotected systems.

When considering only conventional projective measurements, auxiliary
assumptions are needed to prove the reality of the wave function. For exam-
ple, the Pusey-Barrett-Rudolph theorem is based on an additional assump-
tion of preparation independence. The new proof in terms of protective
measurements does not rely on auxiliary assumptions, and it may help set-
tle the issue about the nature of the wave function.
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